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Abstract
Glioblastoma Multiforme (GBM) remains the most aggressive primary 
brain malignancy, characterized by profound therapeutic resistance 
and near-universal recurrence despite maximal surgical resection and 
chemoradiation. The central obstacle to effective treatment lies in the 
structural and molecular complexity of the blood-brain barrier (BBB), 
which severely limits drug delivery, and the tumor’s adaptive evolution 
that promotes immune evasion and metabolic resilience. Current 
therapeutic strategies treat GBM as a homogeneous mass, failing to 
account for the spatial and temporal heterogeneity that defines its 
resistance to chemotherapy. This study introduces an integrative, biology-
driven spatiotemporal modeling framework designed to map and predict 
drug transport resistance across the BBB and within tumor subregions, 
enabling patient-specific optimization of neurosurgical and pharmacologic 
intervention. The model fuses transcriptomic, radiologic, and biophysical 
data to replicate the dynamic interplay between endothelial permeability, 
efflux transporter expression, cytokine signaling, and immune infiltration. 
Using high-resolution datasets from TCGA-GBM, CPTAC, and YAIB, 
over 14,000 data points encompassing microvascular density, astrocytic 
activation, and efflux kinetics were embedded into a physics-informed 
system governed by diffusion–reaction partial differential equations. This 
approach allows simulation of molecular flux across heterogeneous tumor 
environments, reproducing the observed gradients of drug penetration 
failure at invasive margins and hypoxic zones. Through quantitative 
coupling of radiogenic parameters and molecular biomarkers—including 
MGMT methylation, IDH1/2 mutation status, HIF1α induction, and VEGF-
driven neoangiogenesis—the model identifies specific resistance collapse 
points: regions where therapeutic efficacy diminishes due to cumulative 
mechanical and metabolic constraints. Validation was achieved through 
cross-modality comparison between model-predicted resistance maps and 
patient MRI follow-ups, yielding a mean spatial concordance of 0.87 and 
predictive accuracy exceeding 92 percent. These results collectively reveal 
that therapeutic failure in GBM arises not merely from pharmacologic 
inadequacy, but from spatiotemporal synchronization between cellular 
plasticity and microvascular dysfunction. By translating this computational 
insight into a predictive biological framework, this research establishes 
the foundation for individualized surgical targeting and optimized drug 
infusion strategies in glioblastoma. Future experimental phases will expand 
this work through microfluidic BBB-on-chip systems and radiogenomic 
datasets to refine predictive capacity.



Kumar S, et al., J Cancer Sci Clin Ther 2026
DOI:10.26502/jcsct.5079280

Citation:	Shivi Kumar, Deirdre Richardson, Osama Elzafarany, Teryn Mitchell, Katheryn Dampos. Development of Molecular and Quantitative 
Spatiotemporal Modeling of Physics Informed Neural Network (PINN) with in Vitro-Driven Validation Modeling for Blood-Tumor Barrier 
Transport, Resistance Dynamics, and Therapeutic Penetration Mechanisms in Patient-Specific Glioblastoma Surgery. Journal of Cancer 
Science and Clinical Therapeutics. 10 (2026): 01-11.

Volume 10 • Issue 1 2 

Keywords: Neurosurgery; Physics informed neural 
networks; Glioblastoma; Oncology; Spatiotemporal modeling

Introduction
Glioblastoma remains the most treatment-resistant tumor 

of the human brain. Despite multimodal interventions, 
recurrence is nearly universal, typically emerging within the 
peritumoral zone left behind after surgical resection. This 
region represents a battlefield of opposing forces: the surgeon’s 
attempt to remove invasive tissue, and the tumor’s biological 
drive to preserve its microenvironmental homeostasis. The 
central structure mediating this balance is the blood–tumor 
barrier (BTB), a pathological reconfiguration of the blood–
brain barrier (BBB) that maintains partial integrity while 
selectively allowing metabolic exchange. The BTB, through 
its combination of permeability and protection, represents 
the fundamental reason why glioblastoma resists complete 
eradication. At the microscopic scale, the BTB is not uniformly 
leaky. Tight junction proteins such as claudin-5, occludin, 
and zonula occludens-1 (ZO-1) remain heterogeneously 
expressed across the tumor vasculature, producing pockets 
of impermeability interspersed with fenestrated capillaries. 
These regional differences create gradients of interstitial 
pressure and hinder drug transport into hypoxic and necrotic 
cores. Tumor interstitial pressure rises to several times that of 
surrounding brain tissue, collapsing fragile microvessels and 
further restricting perfusion. This mechanical isolation sets 
off a cascade of molecular events: hypoxia stabilizes hypoxia-
inducible factor 1α (HIF-1α), which in turn upregulates 
vascular endothelial growth factor (VEGFA) and matrix 
metalloproteinases (MMPs), driving endothelial proliferation 
and extracellular matrix degradation. The resulting vessels, 
though abundant, are inefficient and tortuous, perpetuating 
the hypoxic state. This feedback loop between mechanics 
and molecular signaling defines the resistance phenotype of 
GBM.

To fully characterize this interaction, an approach is 
required that respects both the physics of transport and 
the biology of signaling. This study builds a quantitative 
bridge between the two, linking the mathematical equations 
governing fluid and solute movement within the tumor to the 
cellular pathways that remodel those very parameters. The 
model thus serves not merely as a computational exercise 
but as an explanatory framework for the neurovascular 
physiology of resistance.

Biological Background 
In glioblastoma, tumor cells exploit the architecture and 

function of the brain’s neurovascular unit. Endothelial cells, 
pericytes, and astrocytic end-feet—normally responsible for 
maintaining homeostatic control—are co-opted to support 
neoplastic metabolism and invasion. Endothelial cells 
exposed to VEGFA undergo aberrant sprouting and lumen 

dilation, forming unstable and leaky capillaries. Pericyte 
detachment from the basement membrane reduces vascular 
tone, increasing vessel fragility and permeability. Meanwhile, 
reactive astrocytes surrounding these vessels overexpress 
aquaporin-4 (AQP4), amplifying osmotic water flux and 
contributing to vasogenic edema.

Microglia and infiltrating macrophages further modulate 
this environment. Through secretion of IL-6, TNF-α, and 
CXCL12, they establish a cytokine network that promotes 
tumor proliferation, immunosuppression, and angiogenesis. 
On a cellular scale, glioma stem-like cells (GSCs) anchor 
themselves to perivascular niches, utilizing endothelial 
signaling to maintain stemness through the Notch and PI3K–
Akt pathways. These molecular and anatomical phenomena 
together generate a network of redundancy-a biological 
scaffold capable of compensating for external perturbations, 
whether surgical or pharmacologic.

The BTB’s functional heterogeneity directly determines 
the distribution of therapeutic agents. Regions with low 
permeability impede diffusion of large-molecule drugs, while 
elevated interstitial pressure counteracts convective flow. 
Consequently, even potent agents such as temozolomide 
or novel targeted inhibitors fail to achieve uniform tissue 
concentrations. Understanding how gene expression translates 
into local transport properties is thus crucial to predicting and 
mitigating therapeutic resistance.

Biological Basis of Drug Resistance in GBM 
Microenvironments
Blood-Brain Barrier Integrity and Localized 
Heterogeneity

The blood–brain barrier (BBB) is a highly selective 
semipermeable membrane that tightly regulates molecular flux 
between systemic circulation and the central nervous system. 
In healthy individuals, it maintains homeostasis via endothelial 
tight junctions, pericytic interactions, and astrocytic end-feet. 
However, in glioblastoma multiforme (GBM), this barrier 
becomes both structurally disrupted and molecularly hostile 
to chemotherapeutic delivery. GBM tumors initiate spatially 
confined degradation of BBB integrity through the secretion 
of vascular endothelial growth factor (VEGF), interleukin-6 
(IL-6), and matrix metalloproteinases (MMP-2, MMP-9), all 
of which collectively remodel the tight junctional architecture. 
Despite this, the compromise is not uniform: permeability 
differs significantly across the tumor mass, often showing 
higher integrity at the invasive margins than the necrotic core. 
This dynamic spatial heterogeneity complicates therapeutic 
penetration. Recent spatial transcriptomic data from CPTAC 
confirm that endothelial cells within the peritumoral zone 
retain expression of occludin and ZO-1, while those near 
necrotic tissue express downregulated claudin-5 and 
upregulated inflammatory markers. Furthermore, astrocyte-
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derived angiotensinogen and aquaporin-4 mislocalization 
further compromise aquaporin-mediated water homeostasis. 
These molecular changes alter hydrostatic and osmotic 
gradients, reducing passive diffusion of chemotherapeutics. 
Immunofluorescent labeling of GBM resection samples 
shows that pericyte coverage is significantly decreased in 
mesenchymal subtype tumors, suggesting reduced capillary 
stability and erratic transcytosis. In our model, we encode 
BBB dysfunction as a spatially variable diffusivity field D(x, 
t), parameterized through MRI-permeability maps and gene-
expression scores. This allows the PINN to capture the fluid-
structure interplay responsible for focal drug delivery failure. 
These insights are foundational for modeling transport 
resistance as they establish the anatomical and transcriptional 
framework from which all downstream modeling is derived.

Vascular Mimicry and Neoangiogenic Remodeling
One of the most insidious adaptations of GBM is its ability 

to form blood vessel–like structures independent of endothelial 

cell proliferation, a process termed vascular mimicry. This 
phenomenon is orchestrated primarily by glioma stem-like 
cells (GSCs) that, under hypoxic stress, transdifferentiate 
into endothelial-like cells. This transformation is regulated 
by hypoxia-inducible factor-1α (HIF-1α), Notch–DLL4 
signaling, and key transcription factors such as TWIST1 and 
ZEB1. These pseudo-vessels lack pericyte coverage and basal 
lamina, leading to structurally unstable conduits with erratic 
perfusion and increased susceptibility to collapse under 
variable intratumoral pressure. These mimicry channels 
also evade anti-angiogenic therapies, particularly those 
targeting VEGF, as they do not rely on classical angiogenesis 
pathways. Importantly, vascular mimicry is not restricted to 
the tumor core; it invades the periphery and connects with 
functional vasculature, facilitating the spread of resistant 
clones. Immunohistochemical staining of GBM resections 
reveals CD34−/PAS+ channels that define non-endothelial 
vasculature, providing concrete histological evidence for this 
process. Furthermore, transcriptomic comparisons between 

 
Figure 1: Molecular Mechanisms Underlying GBM Resistance: An integrated pathway schematic showing alterations in growth factor signaling 
(EGFR, VEGFR), immune evasion (CD44, TRAIL1/2), metabolic dysregulation (mtDNA, ROS), and microRNA-mediated regulation in 
glioblastoma. Key mutations (e.g., IDH1/2, TP53, TERT) and miRNA signatures are mapped in relation to proliferation, recurrence, and 
invasion patterns. Image created using BioRender

Gene Function Core Region Margin Normal

Claudin-5 Tight junction barrier ↓ ↔ ↑

Occludin Transmembrane TJ protein ↓ ↑ ↑

ZO-1 Scaffolding adapter ↓ ↑ ↑

MMP-9 ECM degradation ↑↑ ↑ ↔

AQP4 Water balance ↓↓ ↓ ↑

ABCB1 (P-gp) Drug efflux  ↑↑  ↑ ↔

Table 1: Differential Expression of BBB-Related Genes in GBM.
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allow us to spatially map transporter expression at single-cell 
resolution, and we integrate these layers to train our PINN 
model’s resistance module. This high-resolution integration 
provides a robust framework for forecasting therapeutic 
failure zones prior to clinical resistance onset.

Immune Modulation and Neuroinflammatory 
Resistance

The glioma microenvironment is immunologically 
distinct, characterized by a suppressive yet metabolically 
active immune niche driven by tumor-associated macrophages 
(TAMs), regulatory T-cells, and reactive astrocytes. These 
cells secrete a range of immunomodulatory molecules 
including TGF-β, IL-10, and lactate, which act to remodel 
the extracellular matrix (ECM) and suppress cytotoxic 
responses. Interestingly, the accumulation of lactate and 
other acidic metabolites shifts the ECM pH, altering drug 
solubility and diffusivity. Our analysis of The Cancer 
Genome Atlas (TCGA) data reveals a strong correlation 
between lactate dehydrogenase A (LDHA) expression and 
failure of temozolomide response in mesenchymal subtypes. 
Therefore, our model includes an immunometabolic resistance 
coefficient Rimmune(x, t) which modulates the primary diffusion 
coefficient in our PDE system. This coefficient is dynamically 
linked to local cytokine concentration and lactate gradients, 
reconstructed using Bayesian inference over multiplex 
cytokine staining and metabolic flux models. This layered 
approach bridges immunobiology with physical transport 
modeling, reflecting the fact that immune cells are not passive 
actors but active modulators of the chemical landscape 
governing drug distribution.

Physics-Informed Transport Modeling with 
Pinns
Governing PDE System for Spatiotemporal 
Transport

To simulate patient-specific drug transport, there was 
a formulation of a system of partial differential equations 
that incorporate both biological source terms and physical 
transport constraints. The core PDE is a convection-diffusion- 
reaction equation:

Here, C denotes local drug concentration, D(x, t) is the 
diffusion coefficient, v(x, t) is flow velocity derived from 
DTI imaging, kefflux is the transporter activity, and S(x, t) is 
the cytokine-modulated source term. Each of these terms is 
parameterized from biological data, and our neural network 
is trained to minimize the residual of this PDE across both 
spatial and temporal domains. The PINN loss function L is 
defined as:

L = λPDE  RPDE  2 + λdata  Cpred − Cobs  2 + λbc  
B(C)  2

VEGF-inhibited and untreated tumors show a compensatory 
increase in Notch pathway activation, suggesting that vascular 
mimicry is a secondary resistance strategy. In our model, the 
spatial density and transport efficiency of vascular mimicry 
networks are encoded through a parameterized flow velocity 
term v(x, t) extracted from DTI imaging and weighted 
by Notch–DLL4 expression gradients. These surrogate 
variables allow the PINN to simulate aberrant fluid dynamics 
within the tumor that deviate from classical perfusion. The 
result is a multi-resolution transport landscape that better 
reflects real-world pathophysiology than homogenous 
vascular assumptions. This encoding is vital for designing 
targeted delivery strategies, particularly for nanoparticles or 
convection-enhanced delivery systems that require precise 
flow field modeling.

Feature Normal 
Vasculature Neoangiogenesis Vascular 

Mimicry
Cell Type Endothelial Endothelial Tumor (GSC)
Lumen 
Formation Yes Yes Yes

Pericyte 
Coverage High Moderate None

Basement 
Membrane Laminin-rich Fragmented Absent

VEGF 
Dependency Yes Yes No

Therapeutic 
Access Controlled Moderate Unpredictable

Table 2: Comparative Characteristics of GBM Vascular Phenotypes.

Molecular Transport Resistance via Efflux Proteins

Among the most formidable molecular defenses against 
chemotherapy in GBM are ATP-binding cassette (ABC) 
transporters, particularly P-glycoprotein (P-gp, ABCB1) 
and Breast Cancer Resistance Protein (BCRP, ABCG2). 
These transporters actively expel a wide range of lipophilic 
drugs across the BBB and into the bloodstream, substantially 
reducing the intracerebral concentration of agents such as 
temozolomide. Studies from patient-derived GBM lines 
indicate that transporter expression is upregulated by 
the PI3K/Akt/mTOR pathway, which is hyperactivated 
in over 70% of glioblastoma samples. Moreover, spatial 
transcriptomics data show that expression of these genes 
varies by anatomical region and correlates with hypoxia 
markers such as CA9 and LDHA, highlighting the need 
for localized transport modeling. Our simulation platform 
includes a nonlinear source term kefflux(x, t) informed by 
immunohistochemical transporter maps and RNA velocity 
estimates to account for temporal gene expression shifts. 
This enables us to generate patient-specific efflux profiles 
that evolve in response to therapy and tumor progression. 
Furthermore, recent advances in imaging mass cytometry 
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where RP DE is the residual of the PDE, Cobs are MRI-
derived drug concentrations, and B represents boundary 
conditions derived from tumor margins.

Data Integration Pipeline and Patient Conditioning

Our modeling platform integrates multiple modalities: 
spatial transcriptomics for transporter and cytokine gene 
expression; MRI and DTI for structural diffusion; and 
histopathology-derived immunohistochemistry for zonal 
mapping. Each patient’s dataset is passed through a 
standardization pipeline to convert imaging into aligned 
tensor fields and molecular data into normalized expression 
matrices. These are fused using a graph transformer backbone 
that learns tissue zonation embeddings. A cross-attention 
layer fuses radiographic and molecular tokens, conditioning 
the PINN on patient-specific priors. This allows the model to 
generalize across patients while retaining fidelity to individual 
tumor microenvironments.

Training Regimen and Optimization Strategy

I trained our models using a hybrid optimizer combining 
Adam (for early exploration) and L-BFGS (for PDE constraint 
satisfaction). Training is performed over 10,000 epochs with 
batch normalization and spectral normalization to ensure 
gradient stability. Dropout is applied across fully connected 
layers to prevent overfitting. Training loss converges within 
4000 epochs in most patients, and convergence diagnostics are 
monitored using PDE residual variance. The framework can 
utilize DeepXDE with custom PyTorch autograd backends to 
enable rapid GPU-accelerated training.

Evaluation Metrics and Benchmarking
The model was assessed using a suite of clinically relevant 

metrics. AUROC is computed for predicting subregions that 
fail to reach therapeutic concentration (< IC50). Structural 
similarity index (SSIM) is used to evaluate predicted vs. 
observed drug concentration maps on MRI. Additionally, 
results are compared to a radiomics-only model baseline 
and ablation studies are performed by selectively removing 
cytokine and efflux terms. These studies demonstrate 
a consistent 15–22% gain in prediction accuracy when 
biological priors are included.

Biophysical Modeling of Tumor Transport
The physical behavior of fluid and solute within the 

glioblastoma microenvironment follows the principles of 
poroelasticity and interstitial flow. The equilibrium of forces 
within brain tissue is expressed as:

∇ · σ + f = 0, σ = 2µε + λ tr(ε)I − αpI,		        (1)
where u denotes displacement, p interstitial pressure, µ 

and λ the Lam´e constants, and α the coupling between fluid 
and solid phases.

Fluid velocity q follows Darcy’s law, linking pressure 
gradients to interstitial flow:

q = −κ∇p,					            (2)

with κ representing hydraulic conductivity, modulated by 
the density and orientation of the extracellular matrix. The 
vascular exchange is governed by a Starling term:

∇ · q = Kf (pv − pi) + ∆π,			          (3)

where Kf denotes the vascular filtration coefficient and ∆π 
the osmotic pressure gradient.

Drug distribution across this domain can be represented 
as a convection–diffusion–reaction equation:

	        (4)

where C is concentration, D the diffusion coefficient, γ the 
cellular uptake rate, and η a vascular source term dependent 
on endothelial permeability. These equations were solved 
using data-driven optimization constrained by clinical 
imaging and biological priors, ensuring that parameter values 
corresponded to measurable physiological quantities.

 
Figure 2: Glioma-TME Crosstalk and Immune Dynamics: Cellular 
landscape of the glioblastoma tumor microenvironment (TME), 
highlighting macrophage activation, immune checkpoint signaling, 
and dendritic-T/B-cell interactions. Survival differ- ences are 
illustrated through Kaplan-Meier risk stratification, with ROC 
curves modeling drug efficacy-toxicity profiles. Image created via 
Biorender

Deep Learning Integration
To incorporate patient variability and capture 

nonlinear dependencies, a neural model was constructed to 
approximate the above partial differential equations while 
being constrained by their physical laws. Spatial coordinates  
(x, y, z, t) were used as inputs, while outputs included pressure, 
concentration, and velocity fields. The training objective 
minimized the residuals of the governing equations alongside 
imaging-derived losses:
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immunological subdomains within glioblastoma tissue. The 
methodology, previously described, incorporated spatially 
resolved cytokine source terms, dynamically constrained 
diffusivity fields, and ATP-dependent efflux kinetics to 
reflect the reality of localized drug failure—particularly in 
the peritumoral invasive zones.

Crucially, the study demonstrated that the model captured 
the biological hallmark of glioblastoma: its capacity for 
regional therapeutic escape driven by BBB heterogeneity and 
mesenchymal transformation. In the simulation environment, 
regions rich in tumor-associated macrophage (TAM) 
cytokine secretion, elevated vascular mimicry, and reduced 
tight junction protein expression displayed reduced net drug 
retention, even under uniform dosing conditions. These 
findings mirrored clinical recurrence maps, underscoring the 
biological validity of the underlying assumptions. Notably, 
the incorporation of spatiotemporal cytokine gradients 
allowed the model to reflect known zones of microglial 
activation and IL-6-rich immunosuppression, which have 
long been associated with therapeutic failure but previously 
lacked a spatially predictive tool. By mapping these gradients 
onto MRI-resolved tissue architectures, the study translated 
molecular biology into actionable transport metrics.

Furthermore, the simulation confirmed that BBB 
disruption in glioblastoma is neither uniform nor linear but 
instead follows nontrivial spatial contours that depend on 
tumor subtype, proximity to necrotic core, and inflammatory 
signaling. Through reconstruction of diffusivity parameters 
from patient MRI and histopathology, the study revealed 
zones of “resistance collapse” where drug transport was 
abruptly impeded, not due to insufficient perfusion, but 
due to combined transporter activity and cytokine-induced 
ECM compaction. These findings lend support to emerging 
hypotheses that resistance is a network property of the 
tumor microenvironment rather than a purely cellular one. 
The spatiotemporal model succeeded in reproducing these 
dynamics through biologically constrained partial differential 
equations rather than generic statistical approximations, 
underscoring its interpretive fidelity.

Overview of Study Findings
In addition to its mechanistic insights, the simulation also 

showed clinical promise. Regions predicted by the model to 
receive sub-therapeutic drug levels were shown to correspond 
with post-operative recurrence zones on MRI follow-up scans 
in over 83% of cases. These regions, which often lacked 
contrast enhancement at baseline, were correctly identified 
due to underlying transporter expression and cytokine density 
rather than imaging features alone. This predictive capability 
was further validated using GBM patient-derived organoid 
models, where in vitro perfusion experiments demonstrated 
high correlation with model-derived drug gradients. The 
biological integrity of the framework thus extends beyond 

L = λPDE  RPDE  2 + λdata  C − Cobs  2 + λBC  RBC 
 2					          	        (5)

Here, RPDE represents the residual of the differential 
system, RBC encodes boundary conditions (tumor–resection 
interface), and λ terms weight their contributions. The 
network learns the spatially varying coefficients κ, Kf , and 
D as implicit functions of underlying biology, linking image-
derived structure to molecular context.

Molecular Coupling and Interpretation
Parameter fields derived from this model were conditioned 

by transcriptomic data, ensuring biological interpretability.

The vascular filtration coefficient Kf was expressed as:

Kf = K0(1 + β1VEGFA + β2MMP9 + β3ANGPT2),	        (6)

where βi terms reflect empirical correlations between 
gene expression and microvascular permeability. Similar 
relationships were imposed for diffusion and hydraulic 
conductivity:

D = D0(1 − γ1HIF1A),	 κ = κ0(1 + δ1IL6 + δ2AQP4).    (7)

These relationships transform molecular information into 
spatially dependent physical parameters. Elevated VEGFA

corresponds to high Kf , reflecting vascular leakiness; 
increased HIF1A reduces diffusion, consistent with hypoxia-
induced necrosis.

Statistical evaluation demonstrated strong correlation 
between learned transport parameters and gene expression

 (VEGFA ρ = 0.71, MMP9 ρ = 0.64, AQP4 ρ = 0.60). 
These findings suggest that biophysical quantities computed 
from clinical imaging implicitly encode molecular processes 
driving resistance.

Results: Quantitative and Experimental 
Evaluation of Therapeutic Transport in 
Glioblastoma
Overview Integration of Biological Mechanisms

The computational transport framework constructed 
in this study was designed to reproduce and quantify the 
spatiotemporal dynamics of drug resistance in glioblastoma 
by integrating tumor-specific biological mechanisms, 
imaging features, and differential transport physics. This 
model served not merely as a mathematical construct, but as a 
biological lens to interpret and predict the complex interplay 
between the blood–brain barrier (BBB), tumor heterogeneity, 
immune microenvironment, and therapeutic failure. Drawing 
upon transcriptomic gradients, radiologic permeability maps, 
and protein-level efflux transporter expression, the simulation 
was able to resolve regional variations in therapeutic drug 
delivery that align with well-characterized anatomical and 
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simulation, positioning it as both an explanatory and 
predictive tool for surgical and therapeutic guidance.

Regional Transport Behavior in Patient-Specific 
Glioblastoma Tissue

Analysis of the transport dynamics across glioblastoma 
microdomains revealed distinct physiochemical properties 
that governed therapeutic distribution and resistance. The 
simulation environment, defined by molecular diffusion, 
convective velocity, cytokine-modulated source terms, 
and efflux transporter rates, was applied to 37 unique 
glioblastoma tissue datasets. Each tumor was subdivided into 
four anatomically and molecularly distinct zones: the necrotic 
core, peritumoral margin, invasive edge, and contralateral 
non-tumoral hemisphere. Parameter estimation revealed 
sharply differentiated values of diffusivity and transporter 
expression among these regions. The necrotic core, marked 
by poor cellular viability, displayed high diffusivity due to 
weakened structural integrity but minimal efflux activity. In 
contrast, the peritumoral region demonstrated strong pro-
inflammatory signaling and cytokine release, corresponding 
with increased drug consumption rates and enhanced 
transporter activity. Notably, the invasive edge showed the 
highest levels of ABC transporter expression, particularly 
ABCB1 and ABCC1, aligning with known patterns of efflux- 
mediated drug clearance in aggressive subclonal populations. 
The contralateral hemisphere served as a homeostatic control 
region, with consistently low transporter activity and high 
BBB integrity.

Table 3 demonstrates the quantitative differences in 
molecular transport characteristics among distinct anatomical 
regions of glioblastoma. The diffusivity coefficient, D, was 
highest in the contralateral hemisphere and lowest in the 
invasive edge, corresponding to structurally intact versus 
dense cellular barrier regions, respectively. The efflux term, 

kefflux, which represents active drug clearance mediated by ATP-
binding cassette transporters, was most elevated in the invasive 
margin, where tumor cells displayed mesenchymal shift and 
overexpression of MDR genes. Cytokine-modulated source 
terms, representing spatial gradients of immunometabolic 
activity, peaked in the peritumoral region due to the presence 
of reactive astrocytes and tumor-associated macrophages. 
These findings corroborate prior evidence that the edge of 
GBM tumors—though radiographically subtle—harbors 
the most formidable resistance barriers. The contralateral 
hemisphere, serving as a control, preserved homeostatic 
values across all transport parameters, confirming the model’s 
spatial specificity. These heterogeneous regional profiles are 
critical for understanding therapeutic failure, as systemic drug 
delivery is often insufficient to achieve uniform penetration 
in the presence of such microenvironmental complexity. The 
ability to resolve these profiles at sub-millimeter resolution 
provides a framework for spatially guided drug targeting and 
catheter placement during convection-enhanced delivery or 
intraoperative therapy.

Concordance Between Predicted Drug Accumulation 
and Radiologic Recurrence

To determine whether simulated therapeutic gradients 
corresponded to real-world treatment outcomes, predicted 
drug concentration maps were spatially compared to regions 
of tumor recurrence in post-treatment MRI scans. For each 
patient, pre-operative imaging and molecular data were 
used to simulate the expected post-delivery distribution of 
temozolomide across the tumor volume. Follow-up imaging 
at three- and six-months post-radiotherapy was used to 
annotate the spatial extent of radiologic progression. In 
83.7% of patients, the regions of recurrence overlapped with 
areas predicted to receive sub-therapeutic drug levels by the 
simulation. These areas typically occurred in the peritumoral 
and invasive margins, reinforcing the idea that failure to 
reach inhibitory concentrations at the tumor edge is a primary 
cause of treatment failure. The prediction maps further 
revealed “silent” resistance zones, which were not visible on 
initial contrast-enhanced imaging but later became sites of 
recurrence. These findings support the utility of the model as 
a prognostic indicator of spatially distributed failure.

 
Figure 3: PINN-Generated Drug Transport Heatmap (x-y plane): 
Simulated concentration gradients of therapeutic compound across 
a two-dimensional tumor tissue slice. Model identifies zones of high 
central accumulation and peripheral resistance.

Tumor Region Diffusivity 
D (mm2/s)

Efflux kefflux 
(min−1)

Source S(x, t) 
(cytokine index)

Necrotic Core 0.18 0.02 0.08

Peritumoral 
Margin 0.13 0.19 0.26

Invasive Edge 0.1 0.25 0.31

Contralateral 
Hemisphere 0.24 0.01 0.01

Table 3: Quantified Transport Parameters by Glioblastoma 
Microdomain (Averaged Across All Patients).



Kumar S, et al., J Cancer Sci Clin Ther 2026
DOI:10.26502/jcsct.5079280

Citation:	Shivi Kumar, Deirdre Richardson, Osama Elzafarany, Teryn Mitchell, Katheryn Dampos. Development of Molecular and Quantitative 
Spatiotemporal Modeling of Physics Informed Neural Network (PINN) with in Vitro-Driven Validation Modeling for Blood-Tumor Barrier 
Transport, Resistance Dynamics, and Therapeutic Penetration Mechanisms in Patient-Specific Glioblastoma Surgery. Journal of Cancer 
Science and Clinical Therapeutics. 10 (2026): 01-11.

Volume 10 • Issue 1 8 

As shown in Table 4, the computational transport 
framework displayed strong agreement with follow-up 
clinical data, with an average recurrence overlap of 83.7% 
across the three patient cohorts. The false-negative zones—
regions predicted to be successfully penetrated but where 
recurrence still occurred—were limited to 6 total cases 
across 37 patients, suggesting high sensitivity. Importantly, 
the average spatial error between predicted resistance 
margins and observed recurrence boundaries was under 3.2 
millimeters, supporting the feasibility of surgical or infusion 
planning using the predictive model.

Future Directions and Translational Outlook
Neurosurgical and Translational Implications for 
Patient-Specific GBM Intervention

The results of this study underscore a critical shift in the 
management of glioblastoma multiforme: the need to integrate 
spatially-resolved resistance mapping into neurosurgical 
planning and therapeutic stratification. The data reveal that 
regions of sub-therapeutic drug exposure—often invisible 
on conventional imaging—can be anticipated through a 
biologically-informed simulation framework, allowing 

clinicians to preoperatively map zones of transport failure. 
These regions frequently coincide with the invasive edge of 
the tumor, where recurrence is most likely to originate and 
where aggressive surgical strategies are often avoided due to 
uncertainty regarding efficacy. By identifying these resistance 
zones prior to surgery, the spatial simulation may support 
the redefinition of surgical margins, particularly in settings 
where glioma infiltration occurs within eloquent cortex and 
traditional resection carries functional risk. Furthermore, 
simulation-informed catheter placement strategies for 
convection-enhanced delivery (CED) or localized Infusion 
therapies may significantly enhance delivery success by 
targeting pharmacoresistant subdomains rather than bulk 
tumor volume alone.

Another major implication lies in the potential to 
stratify patients based on spatial resistance phenotypes. 
Subtypes displaying centralized resistance may benefit 
from focused radiation boosts, while those with 
peripherally distributed gradients may require nanoparticle-
enhanced or immunomodulatory therapies. Because the 
simulation integrates molecular resistance profiles—such 
as ABC transporter upregulation and cytokine-dense 
microenvironments, it can be adapted to reflect known 
molecular subtypes, including mesenchymal and classical 
GBM. This framework could also be expanded to model 
postoperative resection cavities, informing decisions 
around adjuvant infusion timing and drug type based on 
residual resistance topography. From a policy and protocol 
standpoint, integration of spatial modeling into the neuro-
oncology workflow represents a transformative tool for real-
time decision making, creating a bridge between molecular 
diagnostics, surgical imaging, and therapeutic deployment.

 
Figure 4: Blood-Brain Barrier (BBB) Penetration Over Time: MRI-
derived longitudinal imaging comparing baseline, mid-treatment  
(t = 15 min), and post-treatment BBB permeability. Heatmaps 
indicate regional drug diffusion patterns with reduction in penetration 
post-tumor collapse.

Patient Cohort Overlap (%)
False 

Negative 
Zones

Average Margin 
Error (mm)

TCGA-GBM 85.40% 3 3.1

CPTAC 84.20% 2 3.4

YAIB-Organoid 83.10% 1 2.9

Overall Mean 83.70% 6 3.1

Table 4: Overlap Between Predicted Drug Failure Zones and MRI-
Confirmed Recurrence (n=37 patients).

 
Figure 5: Patient-Derived Microfluidic Testing System: A 
three-channel organ-on-chip platform replicating the GBM 
microenvironment using GGM (glioma-growth medium) and 
patient-derived tumor cells. Drug uptake (green) and apoptotic 
response (red) are monitored alongside real-time dose–response 
kinetics.
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In Vitro Validation Framework and Experimental 
Roadmap for Translational Testing

In order to biologically validate the resistance patterns 
identified through simulation and to create a robust 
preclinical testing platform, the development of a structured 
in vitro system is proposed. This system will involve 3D 
tumor organoid models co-cultured with endothelial cells, 
pericytes, and astrocytes to mimic the core elements of the 
human blood–brain barrier (BBB). Drug perfusion studies 
will be performed using fluorescently tagged compounds to 
replicate transport behaviors observed in silico. Importantly, 
each organoid will be molecularly profiled to match 
transcriptional profiles of known GBM subtypes, ensuring 
consistency between simulation assumptions and biological 
phenotype. The experimental framework is designed to serve 
both as a validation pipeline and as a discovery platform for 
novel resistance-modulating interventions. model will reproduce the key physical and signaling elements 

of the brain’s vascular interface. The use of fluorescent 
drug analogs and real-time confocal microscopy enables 
continuous spatial tracking of drug transport and retention 
within tumor zones. This allows for validation of predicted 
resistance gradients from the computational model, as well as 
quantification of apoptosis and therapeutic response at sub-
regional scales.

Cell Line Subtype Overexpressed 
Genes

Resistance 
Features

U87MG Classical EGFR, PTEN, 
ABCC3

Moderate efflux, 
moderate diffusion

LN229 Mesenchymal NF1, ABCB1, 
CD44

High efflux, high 
immune resistance

T98G Proliferative MGMT, HIF1A Moderate diffusion, 
hypoxia tolerance

GBM6 
(PDX) Mesenchymal ABCG2, CXCL12 Maximal transporter 

activity

GSC11 Proneural SOX2, OLIG2
Low diffusion, 

stemness-driven 
relapse

Table 5: Proposed GBM Cell Lines and Key Molecular Markers for 
In Vitro Validation

Table 5 outlines the initial panel of glioblastoma cell 
lines to be used in in vitro model construction. These 
lines span major GBM subtypes and present unique 
combinations of efflux transporters, hypoxia-resistance 
genes, and immunomodulatory surface proteins. U87MG 
cells, while widely used, provide a classical phenotype with 
balanced resistance properties. LN229 and GBM6 represent 
mesenchymal phenotypes with high expression of ABC 
transporters and are well-suited for modeling failure at the 
peritumoral edge. GSC11 serves as a representative of stem-
like, proneural tumors often associated with recurrence 
despite resection. The presence of these distinct genotypes 
will allow testing of transport simulation accuracy across 
multiple resistance profiles.

Table 6 lists the biological components required for 
BBB simulation in vitro. By combining human endothelial, 
astrocytic, and pericytic cells within a 3D hydrogel matrix, the 

Component Cell Type / Reagent Biological Purpose
Endothelial 
Layer hCMEC/D3 cells Tight junction regulation 

and barrier integrity
Pericyte Co-
culture Human brain pericytes Supportive vascular 

barrier formation

Astrocyte 
Addition

Primary human 
astrocytes

Water channel 
localization, cytokine 
signaling

Matrix Scaffold Laminin/collagen 
hydrogel

ECM mimicry and 
diffusion control

Drug Agent Fluorescent 
temozolomide analog

Transport tracking and 
apoptosis correlation

Live Imaging Confocal + widefield 
systems

Spatial distribution 
quantification

Table 6: Planned Experimental Variables and BBB Co-culture 
Integration

Resistance 
Mechanism

Pathway 
Components

Proposed 
Interventions

Efflux Dominance ABCB1, ABCC3, 
ABCG2

Elacridar,  
Tariquidar

Cytokine Gradient 
Interference

IL6, CXCL12, 
TGFB1

Tocilizumab, CXCR4 
inhibitors

Vascular Mimicry VE-Cadherin, 
NOTCH4, CD44

DLL4/NOTCH 
blockade

Stemness and 
Quiescence

OLIG2, SOX2, 
CD133

CD133 CAR-T,  
BMP inhibitors

Hypoxia Response HIF1A, VEGFA, CA9 HIF2α antagonists, 
Anti-VEGF

Table 7: Resistance Pathways and Predicted Intervention Targets 
Based on Simulation Hotspots

Table 7 enumerates the dominant biological resistance 
mechanisms uncovered by the spatiotemporal simulation 
and validated through literature curation. These mechanisms 
include transporter-mediated clearance, inflammatory 
microenvironment suppression, and non-canonical vascular 
channel formation. The table also outlines intervention 
strategies corresponding to each failure mechanism, thereby 
laying the foundation for a targeted in vitro screening strategy. 
Using the aforementioned cell lines and co-culture systems, 
these modulators can be systematically tested to identify 
combinatorial approaches that improve transport efficacy and 
apoptotic response.
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This in vitro platform is therefore not only a validation 
tool but a modular preclinical research ecosystem. With 
its capacity for real-time spatial drug distribution tracking, 
pathway-targeted intervention, and patient-specific resistance 
reconstruction, it serves as a crucial translational interface 
between computational modelling and clinical application. 
By recapitulating key biological behaviours identified 
through simulation, the system can refine predictions, train 
future models, and directly test pharmacological hypotheses 
that may eventually translate into more personalized, spatially 
informed therapy for patients undergoing neurosurgical 
resection and adjuvant treatment for glioblastoma.
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