

A Prospective Study on Early Postoperative Outcomes Following Laparoscopic and Open Ventral Hernia Repair

Syeda Mehbuba Joty^{1*}, Ferdous Alam¹, Ayesha Rahman², Hasnat Zaman Zim¹, S. M. Syeed-Ul Alam¹, Nazia Mahzabin³, Bidyut Chandra Debnath¹, Ashok Kumar Sarker⁴, Md. Aminul Islam Joarder¹

Abstract

Background: Ventral hernia repair is a common surgical procedure that involves evolving approaches. Laparoscopic repair is increasingly performed due to its potential to minimize postoperative morbidity; however, evidence from Bangladesh remains limited. This study aimed to compare the early postoperative outcomes between laparoscopic and open ventral hernia repair in a tertiary-care setting.

Methods: This prospective comparative study was conducted at the Shaheed Suhrawardy Medical College Hospital and Enam Medical College Hospital, Dhaka, from January 2024 to July 2025. Seventy-eight patients with ventral hernias were randomized into two equal groups: laparoscopic (n = 39) and open (n = 39). Data on the perioperative outcomes, hospital stay, return to activity and early post-operative complications were collected and analyzed using SPSS 25.0.

Results: The mean operative time was longer for laparoscopic repair (110.5 ± 28.6 min vs. 85.2 ± 22.1 min, $p < 0.001$). However, laparoscopic repair resulted in significantly less blood loss (40 ± 25 mL vs. 120 ± 90 mL), lower pain scores, fewer analgesic doses, shorter hospital stay (2.8 ± 1.4 days vs. 5.6 ± 2.9 days) and earlier return to activity (10 days vs. 22 days). However, the mesh-related complications were collectively higher after laparoscopic repair (25.6% vs. 5.1%).

Conclusion: Laparoscopic ventral hernia repair provides superior short-term recovery benefits but carries an increased risk of wound and mesh-related complications. The choice of technique should therefore be individualized, balancing recovery advantages against the higher risk of mesh-specific morbidity.

Keywords: Ventral hernia; Laparoscopic repair; Open repair; Postoperative outcome

Introduction

Ventral hernias, encompassing both primary and incisional defects of the anterior abdominal wall, represent a common and challenging condition in general surgery, with an estimated lifetime incidence of 10–20% following laparotomy [1]. These hernias occur due to weakening or disruption of the fascial layers, often secondary to prior surgery, trauma, obesity or chronic increases in intra-abdominal pressure [1,2]. Surgical repair remains the mainstay of treatment, with the aim of restoring abdominal wall integrity and preventing complications, such as obstruction or strangulation.

Affiliation:

¹Department of General Surgery, Bangladesh Medical University, Dhaka, Bangladesh

²Department of Surgery, Mugda Medical College Hospital, Dhaka, Bangladesh

³Department of General Surgery & Allied, United Hospital, Dhaka, Bangladesh

⁴Department of Surgery, Enam Medical College Hospital, Dhaka, Bangladesh.

*Corresponding author:

Syeda Mehbuba Joty, Department of General Surgery, Bangladesh Medical University, Dhaka, Bangladesh.

Citation: Syeda Mehbuba Joty, Ferdous Alam, Ayesha Rahman, Hasnat Zaman Zim, S. M. Syeed-Ul Alam, Nazia Mahzabin, Bidyut Chandra Debnath, Ashok Kumar Sarker, Md. Aminul Islam Joarder. A Prospective Study on Early Postoperative Outcomes Following Laparoscopic and Open Ventral Hernia Repair. Journal of Surgery and Research. 9 (2026): 13-18.

Received: January 12, 2026

Accepted: January 16, 2026

Published: January 23, 2026

Open Ventral Hernia Repair (OVHR) with mesh reinforcement has been the standard approach. Although effective, it is often associated with extensive tissue dissection, higher postoperative pain, wound complications and prolonged recovery [3,4]. In contrast, Laparoscopic Ventral Hernia Repair (LVHR), first introduced in the early 1990s, has gained widespread acceptance for its minimally invasive nature and superior postoperative recovery profile [2]. By allowing intraperitoneal mesh placement with minimal incision, LVHR reduces wound morbidity, shortens hospitalization and facilitates a quicker return to normal activity [5].

A growing body of comparative studies and randomized trials has evaluated these two approaches. Most have reported reduced postoperative pain, shorter hospital stays and fewer wound infections with LVHR, albeit at the cost of a longer operative duration and technical complexity. Pereira and Rai found significantly reduced early postoperative morbidity in laparoscopic repair [6], while Rubby et al. and Basheer et al. also reported faster recovery and lower complication rates compared with open methods [3,4]. Nonetheless, the choice of technique is influenced by hernia size, location, surgeon expertise and resource availability [7].

Recent advancements in laparoscopic hernia repair, such as improved mesh materials, fixation techniques, and the IPOM-Plus method involving primary fascial closure before mesh placement, have further enhanced the outcomes. A study by Silfvenius et al. demonstrated better postoperative comfort and reduced recurrence rates with such techniques [8]. Additionally, newer fixation methods, including barbed sutures and absorbable tacks, have improved procedural efficiency and decreased postoperative pain [9,10]. Evidence from randomized controlled trials and systematic reviews continues to validate these refinements, emphasizing the reduced seroma formation and improved cost-effectiveness of minimally invasive strategies [11,12].

Quality of life (QoL) is another critical parameter that influences surgical decision-making. Research by Pırşac et al. and Bayomi et al. highlighted superior postoperative QoL and aesthetic satisfaction following laparoscopic repair [13,14]. However, debates persist regarding the long-term recurrence risk, especially for larger or complex hernias, where open sub-lay repair may still have advantages [2].

Despite extensive global research, regional evidence from South Asia, including Bangladesh, remains scarce. Variations in patient characteristics, surgical infrastructure and postoperative care may influence outcomes and generalizability. Hence, there is a need for prospective comparative studies in local contexts to assess the early postoperative outcomes following both techniques.

This prospective study was conducted to compare early postoperative outcomes, including operative time, blood

loss, postoperative pain, analgesic requirement, hospital stay, return to activity and early complications, between laparoscopic and open ventral hernia repair in a tertiary-care setting. The findings aimed to provide context-specific evidence to support surgical decision-making and enhance patient-centered care in abdominal wall reconstruction.

Methodology and Materials

This prospective comparative study was conducted in the Department of General Surgery at Shaheed Suhrawardy Medical College Hospital and Enam Medical College Hospital, Dhaka, Bangladesh, from January 2024 to July 2025. The study enrolled a total of 78 patients diagnosed with ventral hernia who met the inclusion criteria. Participants were divided into two equal groups: Group A (n = 39) underwent laparoscopic ventral hernia repair and Group B (n = 39) underwent open ventral hernia repair.

Selection Criteria

Inclusion Criteria

- Adults aged 18–70 years diagnosed with primary or incisional ventral hernia.
- Patients are medically fit for general anesthesia.
- Hernia defect size between 2 cm² and 12 cm² (measured intraoperatively).
- Patients provide informed written consent for participation.

Exclusion Criteria

- Recurrent ventral hernia after previous mesh repair.
- Complicated hernia (strangulated, obstructed or incarcerated).
- Presence of significant cardiorespiratory or hepatic impairment precluding laparoscopy.
- Pregnancy or inability to provide consent.
- Patients lost to follow-up within the 30-day postoperative period.

Data Collection and Study Procedure

After obtaining informed consent, consecutive patients with ventral hernias were assessed for eligibility. Demographic information, clinical history, body mass index (BMI), comorbidities and clinical characteristics were collected. All patients underwent standard preoperative investigations, including complete blood count, liver and renal function tests, fasting glucose and abdominal ultrasonography.

Surgical procedures were performed under general anesthesia by consultant surgeons experienced in both techniques. In the laparoscopic group, a standard three-port approach was used, with pneumoperitoneum established at

12–14 mm Hg. Adhesiolysis was performed as required and the composite mesh was fixed intraperitoneally using tacks and transfascial sutures. In the open group, a midline incision was made, the defect was dissected and the mesh was placed in the sublay or onlay positions using interrupted polypropylene sutures. In both groups, mesh fixation techniques and sizes were standardized according to the defect dimensions.

Intraoperative data (operative time and blood loss) and postoperative variables (pain scores, analgesic doses, length of hospital stay and return to activity) were recorded prospectively. Postoperative pain was assessed using a 10-point visual analog scale (VAS). The analgesic consumption was converted to intravenous morphine equivalents to ensure uniformity. Patients were followed up for 30 days to document early complications, such as surgical site infection, seroma, hematoma, wound bleeding and postoperative ileus. Confidentiality was properly maintained throughout the study.

Statistical Analysis

The data were analyzed using SPSS version 25.0. Continuous variables are expressed as mean \pm standard deviation or median (IQR) and categorical variables are expressed as frequencies and percentages. Between-group comparisons were made using the independent Student's t-test or Mann-Whitney U test for continuous data and the

Chi-square or Fisher's exact test for categorical variables. Statistical significance was set at $p < 0.05$.

Table 1 presents baseline characteristics of the study population. Mean age was 46.8 ± 12.5 years in the laparoscopic group and 49.6 ± 13.8 years in the open group. Females constituted slightly more than half of the participants, with a similar gender distribution between groups. Mean body mass index (BMI) was 25.1 ± 3.2 kg/m² for the laparoscopic group and 25.8 ± 3.6 kg/m² for the open group. Most patients had hernia defect sizes between 5–7 cm², with no significant difference between groups ($p = 0.45$). Hypertension and diabetes mellitus were the most frequent comorbidities, present in 20% and 10% of participants, respectively.

Table 2 compares intraoperative and early postoperative outcomes. Mean operative time was longer in the laparoscopic group (110.5 ± 28.6 min) compared to the open group (85.2 ± 22.1 min; $p < 0.001$). However, laparoscopic repair showed lower estimated blood loss (40 ± 25 mL vs. 120 ± 90 mL; $p < 0.001$). Postoperative pain scores on day 1 (VAS) were lower following laparoscopic repair (3.2 ± 1.1) than open repair (5.1 ± 1.3 ; $p < 0.001$). The mean analgesic requirement and hospital stay were reduced in the laparoscopic group. Patients with laparoscopic repair resumed normal activities earlier, with a median recovery of 10 days versus 22 days for open repair ($p < 0.001$).

Table 1: Baseline characteristics of the study population (n = 78).

Characteristics	Variable	Laparoscopic (n = 39)	Open (n = 39)	p-value
Age group (years), Mean \pm SD		46.8 ± 12.5	49.6 ± 13.8	0.23
Sex, n (%)	Male	18 (46.2)	20 (51.3)	0.63
	Female	21 (53.8)	19 (48.7)	
BMI (kg/m ²)		25.1 ± 3.2	25.8 ± 3.6	0.38
Hernia defect size (cm ²)		6.2 ± 3.1	6.8 ± 3.6	0.45
Comorbidities, n (%)	None	25 (64.1)	22 (56.4)	0.46
	Hypertension	7 (17.9)	9 (23.1)	
	Diabetes mellitus	3 (7.7)	5 (12.8)	
	COPD / other chronic disease	4 (10.3)	3 (7.7)	

Table 2: Comparison of intraoperative and early postoperative outcomes.

Outcome	Laparoscopic (n = 39)	Open (n = 39)	p-value
Operative time (min), mean \pm SD	110.5 ± 28.6	85.2 ± 22.1	< 0.001
Estimated blood loss (mL), mean \pm SD	40 ± 25	120 ± 90	< 0.001
Pain (VAS) Day 1, mean \pm SD (0–10)	3.2 ± 1.1	5.1 ± 1.3	< 0.001
Analgesic requirement (IV morphine-equivalent doses, 0–48 h)	1.1 ± 0.9	2.6 ± 1.2	< 0.001
Length of hospital stay (days), mean \pm SD	2.8 ± 1.4	5.6 ± 2.9	< 0.001
Return to normal activity (days), median (IQR)	10 (8–14)	22 (14–30)	< 0.001

Table 3: Early postoperative complications (≤ 30 days).

Complication	Laparoscopic (n = 39)	Open (n = 39)	p-value
Wound infection (SSI)	5 (12.8)	2 (5.1)	0.21
Mesh infection	2 (5.1)	0 (0.0)	0.15
Mesh rejection	1 (2.6)	0 (0.0)	0.31
Meshoma	2 (5.1)	0 (0.0)	0.15
Postoperative ileus (>48 h)	0 (0.0)	2 (5.1)	0.15
Composite mesh related complication	10 (25.6)	2 (5.1)	0.01

Table 3 presents the key postoperative complications directly related to wound integrity and mesh performance. Wound infection, mesh infection, mesh rejection and meshoma were consistently higher after laparoscopic repair, resulting in a significantly greater composite mesh-related complication rate compared with open repair.

Discussion

This prospective comparative study evaluated early postoperative outcomes following laparoscopic and open ventral hernia repair in a tertiary-care setting. The findings demonstrate the complex balance between perioperative advantages and complication profiles associated with the two approaches. As expected, laparoscopic repair showed several short-term benefits, including reduced blood loss, postoperative pain, and length of hospital stay, along with earlier resumption of normal daily activities. These observations are consistent with previously published studies and reflect the advantages inherent to minimally invasive techniques. Reduced tissue dissection, limited incision size and more controlled operative exposure contribute to decreased nociceptive input and shorter recovery periods, as highlighted in both regional and international comparative studies.

The longer operative time observed in the laparoscopic group mirrors the findings of Pereira and Rai as well as Prakash et al., who attributed the increased duration to the technical demands of trocar placement, adhesiolysis and mesh fixation [6,15]. This trend is widely established in laparoscopic hernia literature and is expected in settings where advanced energy devices or fixation systems are still evolving. Nevertheless, despite the prolonged duration, the improved postoperative comfort and functional recovery continue to represent meaningful advantages for patients.

The perioperative benefits of laparoscopic repair observed in this study align with the experiences reported by Basheer et al., who demonstrated reduced intraoperative blood loss and favorable early outcomes associated with minimally invasive hernia repair [4]. Pain scores and analgesic requirements were also substantially lower following laparoscopic repair,

reflecting similar findings from Rasul et al. and Chawla et al. [16,17]. These benefits translate into earlier mobilization and reduced dependency on postoperative support measures, which have important implications in resource-limited settings.

However, the analysis of postoperative complications highlights a different and clinically significant dimension. This study found higher rates of wound infection in the laparoscopic group than in the open group, a finding that contrasts with many earlier reports. While previous comparative studies such as those by Basheer et al. and Pereira and Rai, reported lower wound morbidity with laparoscopic repair [4,6], variation in surgical expertise, case selection and mesh handling may influence postoperative outcomes across different clinical contexts. Factors such as prolonged operative duration, adhesiolysis in previously operated fields and characteristics of the mesh material may contribute to wound-related complications, even in minimally invasive procedures.

More notably, mesh-related complications—mesh infection, mesh rejection, and meshoma formation—were observed more frequently following laparoscopic repair. Mesh infection remains an uncommon but serious concern in hernia surgery and its occurrence may be influenced by mesh type, fixation method or proximity to intra-abdominal contents. Modern technological refinements, such as composite meshes and improved fixation devices, aim to reduce these risks, yet they remain clinically relevant considerations. Mesh rejection and meshoma formation may reflect host inflammatory response, inadequate mesh integration or mechanical factors such as folding or contraction. Studies evaluating IPOM-Plus techniques, such as those by Silfvenius et al. and Basukala et al. emphasize the importance of fascial closure in enhancing mesh stability and improving postoperative comfort [8,18]. Nonetheless, even with evolving techniques, individual patient factors may influence mesh behaviour and the biological response to prosthetic material.

The contrast between improved perioperative outcomes and higher mesh-related morbidity underscores the importance of individualized surgical decision-making. As highlighted by contemporary guidelines from SAGES, the choice between laparoscopic and open repair should be tailored to the patient's hernia characteristics, comorbidities, surgical history and preferences [12]. Surgeons must weigh the benefits of faster recovery against the potential for mesh-related complications, particularly in individuals where intraperitoneal mesh placement may pose additional risks.

The findings reinforce the broader understanding that no single operative approach is universally superior for all ventral hernias. Laparoscopic repair offers meaningful advantages in terms of recovery and postoperative comfort, while open repair may provide a more favorable profile concerning

mesh stability and certain postoperative complications. The variability in outcomes observed across different studies also highlights the importance of ongoing refinement in surgical techniques, mesh materials and perioperative management strategies. As minimally invasive technologies continue to evolve, further research will be essential to optimize patient selection criteria and reduce the risk of mesh-related complications.

Limitations of the study

This study was conducted in two hospitals with a small sample size. Therefore, the results may not be representative of the entire community. Long-term outcomes, such as recurrence and chronic pain, were not assessed because of the short follow-up period.

Conclusion

Laparoscopic Ventral Hernia Repair (LVHR) provides meaningful advantages in early postoperative recovery, including reduced pain, shorter hospital stays and faster return to daily activities. However, the procedure is associated with higher rates of wound infection and mesh-related complications—specifically mesh infection, mesh rejection and meshoma—compared with open repair. These risks suggest that laparoscopic surgery is not inherently superior for all patients and should be selected based on individualized assessment. The findings highlight the need to balance recovery-related benefits against the potential for increased mesh-specific morbidity in laparoscopic repair.

Acknowledgment

I would like to express my sincere gratitude for the invaluable support and co-operation provided by the staff, participants and my co-authors/colleagues who contributed to this study.

Conflicts of interest

There are no conflicts of interest.

References

1. Smith J, Parmely JD. Ventral Hernia. In: StatPearls. Treasure Island (FL): StatPearls Publishing (2021). Available from: <https://www.ncbi.nlm.nih.gov/books/NBK499927>
2. Schlosser KA, Arnold MR, Otero J, et al. Deciding on optimal approach for ventral hernia repair: laparoscopic or open. *Journal of the American College of Surgeons* 228 (2019): 54-65.
3. Rubby SA, Rangaswamy P, Sundar P. A prospective study comparing laparoscopic and open ventral hernia repair. *Int Surg J* 4 (2017): 170-176.
4. Basheer M, Negm A, El-Ghadban H, et al. Laparoscopic versus open ventral hernia repair: a comparative study. *The Egyptian Journal of Surgery* 37 (2018).
5. Gupta SK, Yadav AS, Sinha RA comparative study of laparoscopic versus open ventral hernia repair. *Asian Journal of Medical Sciences* 13 (2022): 274-280.
6. Pereira C, Rai R. Open versus laparoscopic ventral hernia repair: a randomized clinical trial. *Cureus* 13 (2021).
7. Choi YB, Lee IS. Incisional and ventral hernia repair. *Journal of Minimally Invasive Surgery* 21 (2018): 5-12.
8. Silfvenius AU, Lindmark ME, Tall JV, et al. Laparoscopic ventral hernia repair: early follow-up of a randomized controlled study of primary fascial closure before mesh placement. *British Journal of Surgery* 111 (1): 434.
9. Shankaran R, Mishra DS, Kumar V. A prospective randomized controlled study to compare the efficacy and safety of barbed sutures versus standard fixation techniques using tackers in laparoscopic ventral and incisional hernia repair. *medical journal armed forces india* 79 (2023): 72-79.
10. Elsayed ME. Assessment of Mesh Fixation by Dual Use of Trans-Fascial Sutures and Tacks in The Outcome of Laparoscopic Ventral Hernia Repair “Case-Series”. *The Egyptian Journal of Hospital Medicine* 94 (2024): 23-26.
11. He C, Lu J, Ong MW, et al. Seroma prevention strategies in laparoscopic ventral hernia repair: a systematic review. *Hernia* 24 (2020): 717-731.
12. Heniford BT. SAGES guidelines for laparoscopic ventral hernia repair. *Surgical Endoscopy* 30 (2016): 3161-3162.
13. Pătrașcu MI, Ion D, Bolocan A, et al. The Impact of Incisional Hernia Repair on the Quality of Life: A Narrative Review. *Sudan Journal of Medical Sciences* 18 (2023): 242-256.
14. Bayomi MS, Fahmi KS, Sarhan AE, et al. Comparison of quality of life in laparoscopic and open primary ventral hernia repair according to European registry for abdominal wall hernias quality of life score. *The Egyptian Journal of Surgery* 43 (204).
15. Prakash KS, Dumbre R, Phalgune D. A comparative prospective study of laparoscopic and open-mesh repair for ventral hernia. *Indian Journal of Surgery* 82 (2020): 465-471.
16. Rasul S, Ahmed H, Ali S, et al. Post-operative Pain Outcomes of Laparoscopic Ventral Hernia Repair (LVHR): An eight-year experience. *Journal of Bahria University Medical and Dental College* 11 (2021): 148-152.

17. Chawla T, Shahzad N, Ahmad K, et al. Post-operative pain after laparoscopic ventral hernia repair, the impact of mesh soakage with bupivacaine solution versus normal saline solution: A randomised controlled trial (HAPPIEST Trial). *Journal of Minimal Access Surgery* 16 (2020): 328-334.

18. Basukala S, Tamang A, Rawal SB, et al. Comparison of outcomes of laparoscopic hernioplasty with and without fascial repair (IPOM-Plus vs IPOM) for ventral hernia: A retrospective cohort study. *Annals of Medicine and Surgery* 80 (2022): 104297.

This article is an open access article distributed under the terms and conditions of the
[Creative Commons Attribution \(CC-BY\) license 4.0](#)